Copied to
clipboard

?

G = D4×C62order 288 = 25·32

Direct product of C62 and D4

direct product, metabelian, nilpotent (class 2), monomial

Aliases: D4×C62, C627C23, C234C62, C4⋊(C2×C62), C247(C3×C6), (C2×C4)⋊4C62, C124(C22×C6), (C23×C6)⋊10C6, (C22×C12)⋊16C6, (C3×C12)⋊11C23, (C6×C12)⋊37C22, C6.21(C23×C6), (C3×C6).68C24, C222(C2×C62), (C22×C62)⋊2C2, (C2×C62)⋊14C22, C2.1(C22×C62), (C2×C6×C12)⋊19C2, (C2×C12)⋊15(C2×C6), (C22×C6)⋊8(C2×C6), (C2×C6)⋊4(C22×C6), (C22×C4)⋊7(C3×C6), SmallGroup(288,1019)

Series: Derived Chief Lower central Upper central

C1C2 — D4×C62
C1C2C6C3×C6C62D4×C32D4×C3×C6 — D4×C62
C1C2 — D4×C62
C1C2×C62 — D4×C62

Subgroups: 948 in 708 conjugacy classes, 468 normal (10 characteristic)
C1, C2, C2 [×6], C2 [×8], C3 [×4], C4 [×4], C22 [×15], C22 [×24], C6 [×28], C6 [×32], C2×C4 [×6], D4 [×16], C23, C23 [×12], C23 [×8], C32, C12 [×16], C2×C6 [×60], C2×C6 [×96], C22×C4, C2×D4 [×12], C24 [×2], C3×C6, C3×C6 [×6], C3×C6 [×8], C2×C12 [×24], C3×D4 [×64], C22×C6 [×52], C22×C6 [×32], C22×D4, C3×C12 [×4], C62 [×15], C62 [×24], C22×C12 [×4], C6×D4 [×48], C23×C6 [×8], C6×C12 [×6], D4×C32 [×16], C2×C62, C2×C62 [×12], C2×C62 [×8], D4×C2×C6 [×4], C2×C6×C12, D4×C3×C6 [×12], C22×C62 [×2], D4×C62

Quotients:
C1, C2 [×15], C3 [×4], C22 [×35], C6 [×60], D4 [×4], C23 [×15], C32, C2×C6 [×140], C2×D4 [×6], C24, C3×C6 [×15], C3×D4 [×16], C22×C6 [×60], C22×D4, C62 [×35], C6×D4 [×24], C23×C6 [×4], D4×C32 [×4], C2×C62 [×15], D4×C2×C6 [×4], D4×C3×C6 [×6], C22×C62, D4×C62

Generators and relations
 G = < a,b,c,d | a6=b6=c4=d2=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

Smallest permutation representation
On 144 points
Generators in S144
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)(55 56 57 58 59 60)(61 62 63 64 65 66)(67 68 69 70 71 72)(73 74 75 76 77 78)(79 80 81 82 83 84)(85 86 87 88 89 90)(91 92 93 94 95 96)(97 98 99 100 101 102)(103 104 105 106 107 108)(109 110 111 112 113 114)(115 116 117 118 119 120)(121 122 123 124 125 126)(127 128 129 130 131 132)(133 134 135 136 137 138)(139 140 141 142 143 144)
(1 98 104 111 117 51)(2 99 105 112 118 52)(3 100 106 113 119 53)(4 101 107 114 120 54)(5 102 108 109 115 49)(6 97 103 110 116 50)(7 13 144 62 68 56)(8 14 139 63 69 57)(9 15 140 64 70 58)(10 16 141 65 71 59)(11 17 142 66 72 60)(12 18 143 61 67 55)(19 25 31 38 44 94)(20 26 32 39 45 95)(21 27 33 40 46 96)(22 28 34 41 47 91)(23 29 35 42 48 92)(24 30 36 37 43 93)(73 79 85 128 134 122)(74 80 86 129 135 123)(75 81 87 130 136 124)(76 82 88 131 137 125)(77 83 89 132 138 126)(78 84 90 127 133 121)
(1 7 42 74)(2 8 37 75)(3 9 38 76)(4 10 39 77)(5 11 40 78)(6 12 41 73)(13 48 80 98)(14 43 81 99)(15 44 82 100)(16 45 83 101)(17 46 84 102)(18 47 79 97)(19 131 113 64)(20 132 114 65)(21 127 109 66)(22 128 110 61)(23 129 111 62)(24 130 112 63)(25 137 119 70)(26 138 120 71)(27 133 115 72)(28 134 116 67)(29 135 117 68)(30 136 118 69)(31 125 53 58)(32 126 54 59)(33 121 49 60)(34 122 50 55)(35 123 51 56)(36 124 52 57)(85 103 143 91)(86 104 144 92)(87 105 139 93)(88 106 140 94)(89 107 141 95)(90 108 142 96)
(1 74)(2 75)(3 76)(4 77)(5 78)(6 73)(7 42)(8 37)(9 38)(10 39)(11 40)(12 41)(13 48)(14 43)(15 44)(16 45)(17 46)(18 47)(19 64)(20 65)(21 66)(22 61)(23 62)(24 63)(25 70)(26 71)(27 72)(28 67)(29 68)(30 69)(31 58)(32 59)(33 60)(34 55)(35 56)(36 57)(49 121)(50 122)(51 123)(52 124)(53 125)(54 126)(79 97)(80 98)(81 99)(82 100)(83 101)(84 102)(85 103)(86 104)(87 105)(88 106)(89 107)(90 108)(91 143)(92 144)(93 139)(94 140)(95 141)(96 142)(109 127)(110 128)(111 129)(112 130)(113 131)(114 132)(115 133)(116 134)(117 135)(118 136)(119 137)(120 138)

G:=sub<Sym(144)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96)(97,98,99,100,101,102)(103,104,105,106,107,108)(109,110,111,112,113,114)(115,116,117,118,119,120)(121,122,123,124,125,126)(127,128,129,130,131,132)(133,134,135,136,137,138)(139,140,141,142,143,144), (1,98,104,111,117,51)(2,99,105,112,118,52)(3,100,106,113,119,53)(4,101,107,114,120,54)(5,102,108,109,115,49)(6,97,103,110,116,50)(7,13,144,62,68,56)(8,14,139,63,69,57)(9,15,140,64,70,58)(10,16,141,65,71,59)(11,17,142,66,72,60)(12,18,143,61,67,55)(19,25,31,38,44,94)(20,26,32,39,45,95)(21,27,33,40,46,96)(22,28,34,41,47,91)(23,29,35,42,48,92)(24,30,36,37,43,93)(73,79,85,128,134,122)(74,80,86,129,135,123)(75,81,87,130,136,124)(76,82,88,131,137,125)(77,83,89,132,138,126)(78,84,90,127,133,121), (1,7,42,74)(2,8,37,75)(3,9,38,76)(4,10,39,77)(5,11,40,78)(6,12,41,73)(13,48,80,98)(14,43,81,99)(15,44,82,100)(16,45,83,101)(17,46,84,102)(18,47,79,97)(19,131,113,64)(20,132,114,65)(21,127,109,66)(22,128,110,61)(23,129,111,62)(24,130,112,63)(25,137,119,70)(26,138,120,71)(27,133,115,72)(28,134,116,67)(29,135,117,68)(30,136,118,69)(31,125,53,58)(32,126,54,59)(33,121,49,60)(34,122,50,55)(35,123,51,56)(36,124,52,57)(85,103,143,91)(86,104,144,92)(87,105,139,93)(88,106,140,94)(89,107,141,95)(90,108,142,96), (1,74)(2,75)(3,76)(4,77)(5,78)(6,73)(7,42)(8,37)(9,38)(10,39)(11,40)(12,41)(13,48)(14,43)(15,44)(16,45)(17,46)(18,47)(19,64)(20,65)(21,66)(22,61)(23,62)(24,63)(25,70)(26,71)(27,72)(28,67)(29,68)(30,69)(31,58)(32,59)(33,60)(34,55)(35,56)(36,57)(49,121)(50,122)(51,123)(52,124)(53,125)(54,126)(79,97)(80,98)(81,99)(82,100)(83,101)(84,102)(85,103)(86,104)(87,105)(88,106)(89,107)(90,108)(91,143)(92,144)(93,139)(94,140)(95,141)(96,142)(109,127)(110,128)(111,129)(112,130)(113,131)(114,132)(115,133)(116,134)(117,135)(118,136)(119,137)(120,138)>;

G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96)(97,98,99,100,101,102)(103,104,105,106,107,108)(109,110,111,112,113,114)(115,116,117,118,119,120)(121,122,123,124,125,126)(127,128,129,130,131,132)(133,134,135,136,137,138)(139,140,141,142,143,144), (1,98,104,111,117,51)(2,99,105,112,118,52)(3,100,106,113,119,53)(4,101,107,114,120,54)(5,102,108,109,115,49)(6,97,103,110,116,50)(7,13,144,62,68,56)(8,14,139,63,69,57)(9,15,140,64,70,58)(10,16,141,65,71,59)(11,17,142,66,72,60)(12,18,143,61,67,55)(19,25,31,38,44,94)(20,26,32,39,45,95)(21,27,33,40,46,96)(22,28,34,41,47,91)(23,29,35,42,48,92)(24,30,36,37,43,93)(73,79,85,128,134,122)(74,80,86,129,135,123)(75,81,87,130,136,124)(76,82,88,131,137,125)(77,83,89,132,138,126)(78,84,90,127,133,121), (1,7,42,74)(2,8,37,75)(3,9,38,76)(4,10,39,77)(5,11,40,78)(6,12,41,73)(13,48,80,98)(14,43,81,99)(15,44,82,100)(16,45,83,101)(17,46,84,102)(18,47,79,97)(19,131,113,64)(20,132,114,65)(21,127,109,66)(22,128,110,61)(23,129,111,62)(24,130,112,63)(25,137,119,70)(26,138,120,71)(27,133,115,72)(28,134,116,67)(29,135,117,68)(30,136,118,69)(31,125,53,58)(32,126,54,59)(33,121,49,60)(34,122,50,55)(35,123,51,56)(36,124,52,57)(85,103,143,91)(86,104,144,92)(87,105,139,93)(88,106,140,94)(89,107,141,95)(90,108,142,96), (1,74)(2,75)(3,76)(4,77)(5,78)(6,73)(7,42)(8,37)(9,38)(10,39)(11,40)(12,41)(13,48)(14,43)(15,44)(16,45)(17,46)(18,47)(19,64)(20,65)(21,66)(22,61)(23,62)(24,63)(25,70)(26,71)(27,72)(28,67)(29,68)(30,69)(31,58)(32,59)(33,60)(34,55)(35,56)(36,57)(49,121)(50,122)(51,123)(52,124)(53,125)(54,126)(79,97)(80,98)(81,99)(82,100)(83,101)(84,102)(85,103)(86,104)(87,105)(88,106)(89,107)(90,108)(91,143)(92,144)(93,139)(94,140)(95,141)(96,142)(109,127)(110,128)(111,129)(112,130)(113,131)(114,132)(115,133)(116,134)(117,135)(118,136)(119,137)(120,138) );

G=PermutationGroup([(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54),(55,56,57,58,59,60),(61,62,63,64,65,66),(67,68,69,70,71,72),(73,74,75,76,77,78),(79,80,81,82,83,84),(85,86,87,88,89,90),(91,92,93,94,95,96),(97,98,99,100,101,102),(103,104,105,106,107,108),(109,110,111,112,113,114),(115,116,117,118,119,120),(121,122,123,124,125,126),(127,128,129,130,131,132),(133,134,135,136,137,138),(139,140,141,142,143,144)], [(1,98,104,111,117,51),(2,99,105,112,118,52),(3,100,106,113,119,53),(4,101,107,114,120,54),(5,102,108,109,115,49),(6,97,103,110,116,50),(7,13,144,62,68,56),(8,14,139,63,69,57),(9,15,140,64,70,58),(10,16,141,65,71,59),(11,17,142,66,72,60),(12,18,143,61,67,55),(19,25,31,38,44,94),(20,26,32,39,45,95),(21,27,33,40,46,96),(22,28,34,41,47,91),(23,29,35,42,48,92),(24,30,36,37,43,93),(73,79,85,128,134,122),(74,80,86,129,135,123),(75,81,87,130,136,124),(76,82,88,131,137,125),(77,83,89,132,138,126),(78,84,90,127,133,121)], [(1,7,42,74),(2,8,37,75),(3,9,38,76),(4,10,39,77),(5,11,40,78),(6,12,41,73),(13,48,80,98),(14,43,81,99),(15,44,82,100),(16,45,83,101),(17,46,84,102),(18,47,79,97),(19,131,113,64),(20,132,114,65),(21,127,109,66),(22,128,110,61),(23,129,111,62),(24,130,112,63),(25,137,119,70),(26,138,120,71),(27,133,115,72),(28,134,116,67),(29,135,117,68),(30,136,118,69),(31,125,53,58),(32,126,54,59),(33,121,49,60),(34,122,50,55),(35,123,51,56),(36,124,52,57),(85,103,143,91),(86,104,144,92),(87,105,139,93),(88,106,140,94),(89,107,141,95),(90,108,142,96)], [(1,74),(2,75),(3,76),(4,77),(5,78),(6,73),(7,42),(8,37),(9,38),(10,39),(11,40),(12,41),(13,48),(14,43),(15,44),(16,45),(17,46),(18,47),(19,64),(20,65),(21,66),(22,61),(23,62),(24,63),(25,70),(26,71),(27,72),(28,67),(29,68),(30,69),(31,58),(32,59),(33,60),(34,55),(35,56),(36,57),(49,121),(50,122),(51,123),(52,124),(53,125),(54,126),(79,97),(80,98),(81,99),(82,100),(83,101),(84,102),(85,103),(86,104),(87,105),(88,106),(89,107),(90,108),(91,143),(92,144),(93,139),(94,140),(95,141),(96,142),(109,127),(110,128),(111,129),(112,130),(113,131),(114,132),(115,133),(116,134),(117,135),(118,136),(119,137),(120,138)])

Matrix representation G ⊆ GL4(𝔽13) generated by

9000
01000
0090
0009
,
4000
0300
00120
00012
,
12000
01200
001212
0021
,
1000
0100
0010
001112
G:=sub<GL(4,GF(13))| [9,0,0,0,0,10,0,0,0,0,9,0,0,0,0,9],[4,0,0,0,0,3,0,0,0,0,12,0,0,0,0,12],[12,0,0,0,0,12,0,0,0,0,12,2,0,0,12,1],[1,0,0,0,0,1,0,0,0,0,1,11,0,0,0,12] >;

180 conjugacy classes

class 1 2A···2G2H···2O3A···3H4A4B4C4D6A···6BD6BE···6DP12A···12AF
order12···22···23···344446···66···612···12
size11···12···21···122221···12···22···2

180 irreducible representations

dim1111111122
type+++++
imageC1C2C2C2C3C6C6C6D4C3×D4
kernelD4×C62C2×C6×C12D4×C3×C6C22×C62D4×C2×C6C22×C12C6×D4C23×C6C62C2×C6
# reps11122889616432

In GAP, Magma, Sage, TeX

D_4\times C_6^2
% in TeX

G:=Group("D4xC6^2");
// GroupNames label

G:=SmallGroup(288,1019);
// by ID

G=gap.SmallGroup(288,1019);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-2,2045]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^6=c^4=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽